Development of AO-176, a next generation humanized anti-CD47 antibody with novel anti-cancer properties and negligible binding to red blood cells

Myrnam N. Bouchlaka, Robyn Purc, Benjamin Capoccia, Michael Donio, Ronald Hiebsch, Alun J. Carter, Kathy S. Crowley, W. Casey Wilson, Prabir Chakraborty, Pamela T. Manning, Robert Karr, Vicki Sung and Daniel S. Pereira

Arch Oncology, 4320 Forest Park Avenue, St. Louis, MO 63108 and 2000 Sierra Point Parkway, Brisbane, CA 94005

Abstract

Blocking agents to inhibitory immune checkpoints has shown significant advances in cancer treatment and has focused many on enhancing adaptive immune responses. CD47, a cell surface glycoprotein, is an innate immune checkpoint receptor broadly expressed in normal tissues. Binding of CD47 to signal regulatory protein alpha (SRPα) on macrophages and dendritic cells delivers a ‘don’t eat me’ signal that inhibits phagocytosis. Several hematologic and solid tumors escape innate immune surveillance by overexpression of surface CD47 preventing engagement and the interaction of SRPα/CD47. The ability of AO-176 to induce direct tumor cytotoxic cell death in hematologic and solid human tumor cell lines by a cell autonomous mechanism (not ADCC), while sparing primary T cells and other normal tissues (endothelial, skeletal and epithelial). Secondly, AO-176 has preferential binding to tumor cells compared to normal cells, including ex vivo red blood cells (RBC’s) (cynomolgus monkey and human). T cells, and other normal human cells. The negligible binding to RBC’s is expected not only to lower the antigen sink and not sequester AO-176 away from tumor cells, but also to minimize on-target clinical adverse effect observed following treatment with other RBC-binding CD47 antibodies. When tested in cynomolgus monkeys, no adverse effects were observed with respect to RBCs and correlated well with in vitro results. A third novel property of AO-176 is its enhanced binding to tumor cells at acidic pH. AO-176 binds to human tumor cell lines with a mean or range of 20-fold higher at an acidic pH of 6.5 compared to a physiological pH. Because the microenvironment of solid tumors has an acidic pH of 6.4-7.2, this enhanced binding of AO-176 at low pH has the added advantage of tumor targeting. Lastly, we have demonstrated a dose-dependent anti-tumor activity in tumor xenograft models. Taken together, the unique functional characteristics of AO-176, including induction of tumor-specific cell-autonomous killing while sparing T cells and other normal tissues, enhanced binding to tumor cells at acidic pH, tumor-specific reduced binding to RBCs and potent in vivo efficacy should allow for enhanced anti-tumor efficacy and reduction in off-target toxicity (anemia). We believe that AO-176 development will allow for the generation of a therapeutically more superior anti-CD47 blocking antibody.

AO-176: A Next-Generation Humanized anti-CD47 mAb

- Humanized IgG2
 - Blocks CD47/SIRPα interaction to induce phagocytosis of tumor cells
- Selectively and potently binds to human CD47 on tumor cell lines
- Reduced binding to normal cells and negligible binding to human RBC without hemagglutination
- Greater binding affinity at acidic pH (pH is in pH 6.5-6.5; potential tumor targeting
- Direct killing of tumor cells (non-ADCC) programmed cell death type II and previously shown to be anti-tumor cell death characterized by SIRPα induction
- Antitumor efficacy in xenograft models
- Induced recruitment and dendritic cell infiltration to Raji and MDA-MB-231 tumors in vivo
- Very well tolerated in IND enabling toxicology studies

AO-176 Preferentially Blocks CD47 on Tumor Cells

- CD47 blocking by AO-176
- Cytokine release
- ADCC
- Complement-mediated lysis
- Apoptosis
- NK cell killing

AO-176 Does Not Kill Normal Cells

- CD3
- HAEC
- SMAC

AO-176 Kiling & Phagocytosis of Human Tumor Cells

AO-176 Mediates Cell-Autonomous Early and Late Apoptotic Killing of Tumor Cells

AO-176 Inhibits Growth of TNBC and B Cell Lymphoma Xenografts and Increases Macrophage and DC Tumor Infiltrates

AO-176 inhibits growth of Raji B cell lymphoma by promoting macrophage/DC recruitment and cytokine/chemokine induction in the tumor microenvironment

AO-176's unique killing profile coupled with phagocytosis induction and preferential binding to tumor versus normal cells suggest that AO-176 will have an improved therapeutic index compared to current clinical candidates and suggest further clinical investigation.

Conclusions

- AO-176 demonstrates preferential binding to tumor versus normal cells especially RBCs.
- AO-176 shows enhanced binding and function at acidic pH (such as in tumor microenvironment), a potential tumor targeting mechanism.
- In addition to promoting phagocytosis, AO-176 induces FcγR signaling as well as immunocytic cell death (CD47 is an ADCC and a phagocytic targeting mechanism) and some normal tumor cells but sparing normal cells (i.e. T cells)
- AO-176 showed significant tumor growth inhibition in B cell lymphoma and TNBC xenograft models.
- The observed tumor growth inhibition was accompanied with recruitment of microphages and dendritic cells (DCs) to the TME for both Raji B cell lymphoma and MDA-MB-231 TNBC models.
- Macrophages and DC infiltrates correlated with an increase in murine cytokines and chemokines in B cell lymphoma xenografts.

Summary Table of Phagocytosis and Killing of Solid Tumors

- AO-176’s unique killing profile coupled with phagocytosis induction and preferential binding to tumor versus normal cells suggest that AO-176 will have an improved therapeutic index compared to current clinical candidates and suggest further clinical investigation.

Conclusions

- AO-176 demonstrates preferential binding to tumor versus normal cells especially RBCs.
- AO-176 shows enhanced binding and function at acidic pH (such as in tumor microenvironment), a potential tumor targeting mechanism.
- In addition to promoting phagocytosis, AO-176 induces FcγR signaling as well as immunocytic cell death (CD47 is an ADCC and a phagocytic targeting mechanism) and some normal tumor cells but sparing normal cells (i.e. T cells)
- AO-176 showed significant tumor growth inhibition in B cell lymphoma and TNBC xenograft models.
- The observed tumor growth inhibition was accompanied with recruitment of microphages and dendritic cells (DCs) to the TME for both Raji B cell lymphoma and MDA-MB-231 TNBC models.
- Macrophages and DC infiltrates correlated with an increase in murine cytokines and chemokines in B cell lymphoma xenografts.